The future of photonics using quantum dots
Quantum-dot lasers are promising for integrated photonic circuits
Thousands of miles of fiber-optic cables crisscross the globe and package everything from financial data to cat videos into light. But when the signal arrives at your local data center, it runs into a silicon bottleneck. Instead of light, computers run on electrons moving through silicon-based chips – which, despite huge advances, are still less efficient than photonics.
To break through this bottleneck, researchers are trying to integrate photonics into silicon devices. They’ve been developing lasers – a crucial component of photonic circuits – that work seamlessly on silicon. In a paper appearing this week in APL Photonics, from AIP Publishing, researchers from the University of California, Santa Barbara write that the future of silicon-based lasers may be in tiny, atomlike structures called quantum dots.
Such lasers could save a lot of energy. Replacing the electronic components that connect devices with photonic components could cut energy use by 20 to 75 percent, Justin Norman, a graduate student at UC Santa Barbara, said. “It’s a substantial cut to global energy consumption just by having a way to integrate lasers and photonic circuits with silicon.”
Silicon, however, does not have the right properties for lasers. Researchers have instead turned to a class of materials from Groups III and V of the periodic table because these materials can be integrated with silicon.
Archive link
Комментариев нет:
Отправить комментарий