Search This Blog

суббота, 8 сентября 2018 г.

The incredible lightness of the Higgs


CERN – European Organization for Nuclear Research logo.


7 Sep 2018


Why is the Higgs boson so light? That’s one of the questions that has been bothering particle physicists since the famous particle was discovered in 2012. This is because the theory of how the particle interacts with the most massive of all observed elementary particles, the top quark, involves corrections at a fundamental (quantum) level that could result in a Higgs mass much larger than the measured value of 125 GeV. How large? Perhaps as much as sixteen orders of magnitude larger than the measured Higgs mass. Since the Higgs mass is so light, this suggests more particles could exist that cancel the quantum corrections from the top quark (and other heavy particles).


In a paper posted online and submitted to the journal Physical Review Letters, the ATLAS collaboration reports results of a combination of searches for a new particle – dubbed a vector-like top quark – that could help keep the Higgs boson light.



Image above: View of the ATLAS detector. The ATLAS collaboration reports results of a combination of searches for a new particle – dubbed a vector-like top quark – that could be the culprit behind the Higgs lightness. (Image: Claudia Marcelloni/ATLAS CERN).


Various proposals attempt to cancel out the large quantum corrections to the Higgs boson mass. Many of them involve vector-like top quarks, which are hypothetical particles not predicted by the Standard Model of particle physics. Unlike the Standard Model top quark, which always decays to a bottom quark and a W boson, vector-like top quarks would decay in one of three different ways, if they decayed to Standard Model particles. Specifically, a vector-like top quark would decay to a bottom quark and a W boson, or to a Z boson and a top quark, or still to a Higgs boson and a top quark.


To maximise the chances of finding vector-like top quarks, the ATLAS collaboration conducted several different types of search using data from proton–proton collisions collected at the Large Hadron Collider (LHC) in 2015 and 2016 at an energy of 13 TeV; each individual search is sensitive to a particular set of particle decays. They then combined the results to increase the sensitivity to vector-like top quarks, yet found no sign of them.


Despite this, their analysis allowed them to expand the reach of individual searches and place the most stringent lower bounds on the mass of vector-like top quarks to date. The analysis excludes vector-like top quarks with masses below about 1300 GeV for any combination of the three top-quark decays into Standard Model particles. The previous best lower limit from an individual search was 1190 GeV.


It will now get more challenging: for masses heavier than 1300 GeV a single vector-like top quark is created more often than a pair. But with a wealth of data coming from the LHC, the search continues.


Note:


CERN, the European Organization for Nuclear Research, is one of the world’s largest and most respected centres for scientific research. Its business is fundamental physics, finding out what the Universe is made of and how it works. At CERN, the world’s largest and most complex scientific instruments are used to study the basic constituents of matter — the fundamental particles. By studying what happens when these particles collide, physicists learn about the laws of Nature.


The instruments used at CERN are particle accelerators and detectors. Accelerators boost beams of particles to high energies before they are made to collide with each other or with stationary targets. Detectors observe and record the results of these collisions.


Founded in 1954, the CERN Laboratory sits astride the Franco–Swiss border near Geneva. It was one of Europe’s first joint ventures and now has 22 Member States.


Related links:


Physical Review Letters: https://arxiv.org/abs/1808.02343


Higgs boson: https://home.cern/topics/higgs-boson


Standard Model of particle physics: https://home.cern/about/physics/standard-model


ATLAS: https://home.cern/about/experiments/atlas


Large Hadron Collider (LHC): https://home.cern/topics/large-hadron-collider


For more information about European Organization for Nuclear Research (CERN), Visit: https://home.cern/


Image (mentioned), Text, Credits: CERN/Ana Lopes.


Best regards, Orbiter.chArchive link


Комментариев нет:

Popular last month