ISS — Expedition 59 Mission patch.
June 21, 2019
Last week, the members of Expedition 59 conducted scientific investigations that examined how the human immune system and sensory perception change in space, and tested using microgravity to manufacture optical fibers. These and other studies aboard the International Space Station also make important contributions to NASA’s Artemis human exploration program, a two-phased approach to land humans on the Moon by 2024 and establish a sustained presence there by 2028.
Image above: The Japanese Small Satellite Orbital Deployer, attached to a robotic arm outside of the Japan Aerospace Exploration Agency’s Kibo laboratory module, ejects a set of three CubeSat satellites from Nepal, Sri Lanka and Japan for technology demonstrations. The International Space Station was orbiting 256 miles above the Amazon River in Brazil at the time. Image Credit: NASA.
Here are details on some of the science work that the crew of the orbiting lab conducted during the week of June 17:
Manufacturing high quality optic fiber in space
Crew members performed preparation work so ground could initiate fiber optic print runs for the Fiber Optic Production (FOP) investigation. Operating in the Microgravity Science Glovebox (MSG), this investigation creates optical fibers using a blend of zirconium, barium, lanthanum, sodium, and aluminum called ZBLAN. Studies suggest that ZBLAN optical fibers produced in microgravity should be superior to those produced on Earth. The results may help verify these studies and guide further efforts to manufacture high value optical fiber in large volume aboard the space station.
A first look at immune response to an in-space challenge
Rodent Research-12 (RR-12) examines the effects of spaceflight on the function of antibody production and immune system memory. Spaceflight has a dramatic effect on immune response, but few studies have followed an actual challenge to the body’s immune system in space. By advancing development of measures to counter spaceflight’s effects on the immune system, this investigation may help to maintain crew health during future long-duration space missions. Last week, the crew discussed logistics and operations with the NASA Rodent Research and JAXA Mouse Mission teams on the ground.
Image above: NASA astronaut Anne McClain works on the Photobioreactor study on using microalgae to support hybrid life support systems in space. On future long-duration exploration missions, this approach could reduce the amount of consumables required from Earth. Image Credit: NASA.
Interpreting sensory input without gravity
The crew performed a session for the VECTION experiment. This study examines to what extent space may disrupt an astronaut’s ability to visually interpret motion, orientation, and distance. It also looks at how these perceptions may adapt in space and change again upon return to Earth. Impairments in ability to judge motion, assess orientation, and estimate distances can have serious operational consequences for astronauts. Further knowledge of these abilities in space and on Earth could significantly improve safety of crew members on future space exploration missions.
Other investigations on which the crew performed work:
— The Photobioreactor investigation demonstrates whether the biological processes of microalgae can serve as part of a hybrid life support system. This approach would help future long-duration exploration missions reduce supplies that must be brought from Earth: https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=7426
— The Capillary Structures investigation studies using structures of specific shapes to manage fluid and gas mixtures: https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=7329
Image above: NASA astronaut Christina Koch checks out hardware for Capillary Structures, an experiment studying a new method of using structures of specific shapes to manage fluid and gas mixtures for more reliable life support systems on future space missions. Image Credit: NASA.
— STaARS BioScience-11 manufactures nanosomes, or nanoparticle delivery systems, for use in targeting chronic conditions such as Alzheimer’s disease and human immunodeficiency virus (HIV). Nanoparticles created in microgravity are much smaller, enhancing drug uptake and delivery and potentially reducing required dose per treatment and cost per dose: https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=7941
— Food Acceptability examines changes in the appeal of food aboard the space station during long-duration missions. “Menu fatigue” from repeatedly consuming a limited choice of foods may contribute to the loss of body mass often experienced by crew members, potentially affecting astronaut health, especially as mission length increases: https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=7562
Image above: Canadian Space Agency astronaut David Saint-Jacques hydrating growth packets for the BioNutrients investigation, which demonstrates a technology using engineered microbes for on-demand production of nutrients for humans on long-duration space missions. Image Credit: NASA.
— Veg-04A focuses on how light quality and fertilizer affect growth of Mizuna mustard, a leafy green crop, along with microbial food safety, nutritional value, taste acceptability by the crew, and the overall behavioral health benefits of having plants and fresh food in space: https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=7896
— Probiotics examines the effects of beneficial bacteria or probiotics on the intestinal microbiota and immune function of crew members on long-duration space missions: https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=2047
— Vascular Echo examines changes in blood vessels and the heart in space and recovery following return to Earth. Results could provide insight into developing countermeasures to help maintain crew member health on long voyages such as to the Moon or Mars: https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=1664
— Genes in Space-6 determines the optimal DNA repair mechanisms that cells use in the spaceflight environment. It induces DNA damage and evaluates the entire mutation and repair process in space for the first time, using the miniPCR and Biomolecule Sequencer tools aboard the space station: https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=7893
— Standard Measures captures a consistent and simple set of measures from crew members throughout the ISS Program in order to characterize adaptive responses to and risks of living in space: https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=7711
Related links:
Expedition 59: https://www.nasa.gov/mission_pages/station/expeditions/expedition59/index.html
Artemis: https://www.nasa.gov/feature/what-is-artemis/
Fiber Optic Production (FOP): https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=7630
Rodent Research-12 (RR-12): https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=7868
VECTION: https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=7484
Spot the Station: https://spotthestation.nasa.gov/
Space Station Research and Technology: https://www.nasa.gov/mission_pages/station/research/index.html
International Space Station (ISS): https://www.nasa.gov/mission_pages/station/main/index.html
Images (mentioned), Video (NASA), Text, Credits: NASA/Erling Holm/Jorge Sotomayor, Lead Increment Scientist Expeditions 59/60.
Best regards, Orbiter.chArchive link
Комментариев нет:
Отправить комментарий