Search This Blog

четверг, 5 декабря 2019 г.

NASA's Parker Solar Probe Sheds New Light on the Sun













NASA - Parker Solar Probe patch.

Dec. 4, 2019

In August 2018, NASA's Parker Solar Probe launched to space, soon becoming the closest-ever spacecraft to the Sun. With cutting-edge scientific instruments to measure the environment around the spacecraft, Parker Solar Probe has completed three of 24 planned passes through never-before-explored parts of the Sun's atmosphere, the corona. On Dec. 4, 2019, four new papers in the journal Nature describe what scientists have learned from this unprecedented exploration of our star — and what they look forward to learning next.

These findings reveal new information about the behavior of the material and particles that speed away from the Sun, bringing scientists closer to answering fundamental questions about the physics of our star. In the quest to protect astronauts and technology in space, the information Parker has uncovered about how the Sun constantly ejects material and energy will help scientists re-write the models we use to understand and predict the space weather around our planet and understand the process by which stars are created and evolve.

Illustration of Parker Solar Probe. Credit: NASA/Johns Hopkins APL

“This first data from Parker reveals our star, the Sun, in new and surprising ways,” said Thomas Zurbuchen, associate administrator for science at NASA Headquarters in Washington. “Observing the Sun up close rather than from a much greater distance is giving us an unprecedented view into important solar phenomena and how they affect us on Earth, and gives us new insights relevant to the understanding of active stars across galaxies. It’s just the beginning of an incredibly exciting time for heliophysics with Parker at the vanguard of new discoveries.”

Though it may seem placid to us here on Earth, the Sun is anything but quiet. Our star is magnetically active, unleashing powerful bursts of light, deluges of particles moving near the speed of light and billion-ton clouds of magnetized material. All this activity affects our planet, injecting damaging particles into the space where our satellites and astronauts fly, disrupting communications and navigation signals, and even — when intense — triggering power outages. It’s been happening for the Sun's entire 5-billion-year lifetime, and will continue to shape the destinies of Earth and the other planets in our solar system into the future.